Detecting Communities in Social Networks Using Local Information

نویسندگان

  • Jiyang Chen
  • Osmar R. Zaïane
  • Randy Goebel
چکیده

Much structured data of scientific interest can be represented as networks, where sets of nodes or vertices are joined together in pairs by links or edges. Although these networks may belong to different research areas, there is one property that many of them do have in common: the network community structure. There has been much recent research on identifying communities in networks. However, most existing approaches require complete network information, which is impractical for some networks, e.g. the World Wide Web or the cell phone telecommunication network. Local community detection algorithms have been proposed to solve the problem but their results usually contain many outliers. In this paper, we propose a new measure of local community structure, coupled with a two-phase algorithm that extracts all possible candidates first, and then optimizes the community hierarchy. We also propose a community discovery process for large networks that iteratively finds communities based on our measure. We compare our results with previous methods on real world networks such as the co-purchase network from Amazon. Experimental results verify the feasibility and effectiveness of our approach.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Detecting Overlapping Communities in Social Networks using Deep Learning

In network analysis, a community is typically considered of as a group of nodes with a great density of edges among themselves and a low density of edges relative to other network parts. Detecting a community structure is important in any network analysis task, especially for revealing patterns between specified nodes. There is a variety of approaches presented in the literature for overlapping...

متن کامل

Mining Overlapping Communities in Real-world Networks Based on Extended Modularity Gain

Detecting communities plays a vital role in studying group level patterns of a social network and it can be helpful in developing several recommendation systems such as movie recommendation, book recommendation, friend recommendation and so on. Most of the community detection algorithms can detect disjoint communities only, but in the real time scenario, a node can be a member of more than one ...

متن کامل

Detecting Location-Centric Communities Using Social-Spatial Links with Temporal Constraints

Community detection on social networks typically aims to cluster users into different communities based on their social links. The increasing popularity of Location-based Social Networks offers the opportunity to augment these social links with spatial information, for detecting location-centric communities that frequently visit similar places. Such location-centric communities are important to...

متن کامل

A Novel Approach for Detecting Relationships in Social Networks Using Cellular Automata Based Graph Coloring

All the social networks can be modeled as a graph, where each roles as vertex and each relationroles as an edge. The graph can be show as G = [V;E], where V is the set of vertices and E is theset of edges. All social networks can be segmented to K groups, where there are members in eachgroup with same features. In each group each person knows other individuals and is in touch ...

متن کامل

Detecting Community Structure in Dynamic Social Networks Using the Concept of Leadership

Detecting community structure in social networks is a fundamental problem empowering us to identify groups of actors with similar interests. There have been extensive works focusing on finding communities in static networks, however, in reality, due to dynamic nature of social networks, they are evolving continuously. Ignoring the dynamic aspect of social networks, neither allows us to capture ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010